Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Optical atomic clocks are our most precise tools to measure time and frequency1,2,3. Precision frequency comparisons between clocks in separate locations enable one to probe the space–time variation of fundamental constants4,5 and the properties of dark matter6,7, to perform geodesy8,9,10 and to evaluate systematic clock shifts. Measurements on independent systems are limited by the standard quantum limit; measurements on entangled systems can surpass the standard quantum limit to reach the ultimate precision allowed by quantum theory—the Heisenberg limit. Although local entangling operations have demonstrated this enhancement at microscopic distances11,12,13,14,15,16, comparisons between remote atomic clocks require the rapid generation of high-fidelity entanglement between systems that have no intrinsic interactions. Here we report the use of a photonic link17,18 to entangle two 88Sr+ ions separated by a macroscopic distance19 (approximately 2 m) to demonstrate an elementary quantum network of entangled optical clocks. For frequency comparisons between the ions, we find that entanglement reduces the measurement uncertainty by nearly \(\sqrt{2}\) , the value predicted for the Heisenberg limit. Today’s optical clocks are typically limited by dephasing of the probe laser20; in this regime, we find that entanglement yields a factor of 2 reduction in the measurement uncertainty compared with conventional correlation spectroscopy techniques20,21,22. We demonstrate this enhancement for the measurement of a frequency shift applied to one of the clocks. This two-node network could be extended to additional nodes23, to other species of trapped particles or—through local operations—to larger entangled systems.
Your institute does not have access to this article
Get full journal access for 1 year
All prices are NET prices. VAT will be added later in the checkout. Tax calculation will be finalised during checkout.
Get time limited or full article access on ReadCube.
All prices are NET prices.
Source data for all plots are available. All other data or analysis code that support the plots are available from the corresponding authors upon reasonable request.
Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).
ADS CAS PubMed Article Google Scholar
Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 13, 714–719 (2019).
ADS CAS Article Google Scholar
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).
ADS CAS Article Google Scholar
Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).
ADS CAS PubMed Article Google Scholar
Lange, R. et al. Improved limits for violations of local position invariance from atomic clock comparisons. Phys. Rev. Lett. 126, 011102 (2021).
ADS CAS PubMed Article Google Scholar
Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
ADS MathSciNet CAS Article Google Scholar
Chou, C.-W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).
ADS CAS PubMed Article Google Scholar
Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).
ADS PubMed Article CAS Google Scholar
McGrew, W. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).
ADS CAS PubMed Article Google Scholar
Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001).
ADS CAS PubMed Article Google Scholar
Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).
ADS CAS PubMed Article Google Scholar
Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006).
ADS CAS PubMed Article Google Scholar
Megidish, E., Broz, J., Greene, N. & Häffner, H. Improved test of local Lorentz invariance from a deterministic preparation of entangled states. Phys. Rev. Lett. 122, 123605 (2019).
ADS CAS PubMed Article Google Scholar
Manovitz, T., Shaniv, R., Shapira, Y., Ozeri, R. & Akerman, N. Precision measurement of atomic isotope shifts using a two-isotope entangled state. Phys. Rev. Lett. 123, 203001 (2019).
ADS CAS PubMed Article Google Scholar
Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).
ADS PubMed Article CAS Google Scholar
Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).
ADS CAS PubMed Article Google Scholar
Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
ADS Article CAS Google Scholar
Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).
ADS CAS PubMed Article Google Scholar
Clements, E. R. et al. Lifetime-limited interrogation of two independent 27Al+ clocks using correlation spectroscopy. Phys. Rev. Lett. 125, 243602 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
Hume, D. B. & Leibrandt, D. R. Probing beyond the laser coherence time in optical clock comparisons. Phys. Rev. A 93, 032138 (2016).
Kim, M. E. et al. Optical coherence between atomic species at the second scale: improved clock comparisons via differential spectroscopy. Preprint at https://arxiv.org/abs/2109.09540 (2021).
Komar, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).
Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992).
ADS CAS PubMed Article Google Scholar
Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67 (1994).
ADS CAS PubMed Article Google Scholar
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
ADS MathSciNet Article Google Scholar
Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).
ADS MathSciNet Article Google Scholar
Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981).
Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).
ADS CAS PubMed Article Google Scholar
Malnou, M. et al. Squeezed vacuum used to accelerate the search for a weak classical signal. Phys. Rev. X 9, 021023 (2019).
Wolf, F. et al. Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions. Nat. Commun. 10, 2929(2019).
ADS PubMed PubMed Central Article CAS Google Scholar
Gilmore, K. A. et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science 373, 673–678 (2021).
ADS CAS PubMed Article Google Scholar
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
ADS CAS PubMed Article Google Scholar
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
ADS MATH Article Google Scholar
Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).
ADS CAS PubMed Article Google Scholar
Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
ADS CAS PubMed Article Google Scholar
Ramsey, N. F. A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699 (1950).
ADS CAS Article Google Scholar
Ramsey, N. F. Resonance experiments in successive oscillatory fields. Rev. Sci. Instrum. 28, 57–58 (1957).
Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554 (1993).
ADS CAS PubMed Article Google Scholar
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).
ADS MathSciNet PubMed Article CAS Google Scholar
Riis, E. & Sinclair, A. G. Optimum measurement strategies for trapped ion optical frequency standards. J. Phys. B 37, 4719–4732 (2004).
ADS CAS Article Google Scholar
Leroux, I. D. et al. On-line estimation of local oscillator noise and optimisation of servo parameters in atomic clocks. Metrologia 54, 307–321 (2017).
ADS CAS Article Google Scholar
Bize, S. et al. Interrogation oscillator noise rejection in the comparison of atomic fountains. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1253–1255 (2000).
CAS PubMed Article Google Scholar
Chwalla, M. et al. Precision spectroscopy with two correlated atoms. Appl. Phys. B 89, 483–488 (2007).
ADS CAS Article Google Scholar
Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett. 120, 103201 (2018).
ADS CAS PubMed Article Google Scholar
Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).
ADS CAS PubMed Article Google Scholar
Nadlinger, D. P. et al. Experimental quantum key distribution certified by Bell's theorem. Nature 607, 682–686 (2022).
Stephenson, L. Entanglement between Nodes of a Quantum Network. Ph.D. thesis, Univ. of Oxford (2019).
Sahoo, B. K., Islam, M. R., Das, B. P., Chaudhuri, R. K. & Mukherjee, D. Lifetimes of the metastable 2D3/2,5/2 states in Ca+, Sr+, and Ba+. Phys. Rev. A 74, 062504 (2006).
ADS Article CAS Google Scholar
Gabrielse, G. & Tan, J. Self-shielding superconducting solenoid systems. J. Appl. Phys 63, 5143–5148 (1988).
Ruster, T. et al. A long-lived Zeeman trapped-ion qubit. Appl. Phys. B 122, 254 (2016).
Aharon, N., Spethmann, N., Leroux, I. D., Schmidt, P. O. & Retzker, A. Robust optical clock transitions in trapped ions using dynamical decoupling. New J. Phys. 21, 083040 (2019).
ADS CAS Article Google Scholar
Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).
ADS CAS PubMed Article Google Scholar
Hughes, A. C. et al. Benchmarking a high-fidelity mixed-species entangling gate. Phys. Rev. Lett. 125, 080504 (2020).
ADS CAS PubMed Article Google Scholar
Boulder Atomic Clock Optical Network (BACON) Collaboration. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).
Wright, T. A. et al. Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band. Phys. Rev. App. 10, 044012 (2018).
We thank E. R. Clements, R. M. Godun, D. B. Hume and A. M. Steane for helpful discussions and insightful comments on the manuscript. We thank Sandia National Laboratories for supplying the HOA2 ion traps used in these experiments. This work was supported by the UK EPSRC Hub in Quantum Computing and Simulation (EP/T001062/1), the EU Quantum Technology Flagship Project AQTION (No. 820495) and C.J.B.’s UKRI Fellowship (MR/S03238X/1). B.C.N. acknowledges funding from the UK National Physical Laboratory.
These authors contributed equally: B. C. Nichol, R. Srinivas
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
B. C. Nichol, R. Srinivas, D. P. Nadlinger, P. Drmota, D. Main, G. Araneda, C. J. Ballance & D. M. Lucas
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
D.P.N., B.C.N., P.D., D.M., G.A., R.S. and C.J.B. built and maintained the experimental apparatus. R.S. conceived the experiments. B.C.N. and R.S. carried out the experiments, assisted by D.P.N., P.D., D.M. and G.A. B.C.N., R.S. and D.M.L. analysed the data. B.C.N. and R.S. wrote the manuscript with input from all authors. C.J.B. and D.M.L. secured funding and supervised the work.
Correspondence to B. C. Nichol or R. Srinivas.
C.J.B. is a director of Oxford Ionics. The remaining authors declare no competing interests.
Nature thanks David Leibrandt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Sections A–J, including Figs. S1–9.
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Nichol, B.C., Srinivas, R., Nadlinger, D.P. et al. An elementary quantum network of entangled optical atomic clocks. Nature (2022). https://doi.org/10.1038/s41586-022-05088-z
DOI: https://doi.org/10.1038/s41586-022-05088-z
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
Nature (Nature) ISSN 1476-4687 (online) ISSN 0028-0836 (print)
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.